NJIT researchers unlock a new method for testing protein-based drugs: Researchers say a newly developed lab technique could spark a paradigm shift in biopharmaceuticals testing, promising to speed up drug discovery and development of therapeutic proteins and vaccines.

New Jersey Institute of Technology (NJIT) researchers have unveiled a new lab technique they say represents a “paradigm shift” in how pharmaceutical laboratories test and produce new protein-based drugs, such as therapeutic monoclonal antibodies being developed to treat a variety of diseases, from cancers to infectious diseases.

Researchers say their electrochemistry-based approach, described in the journal Analytical Chemistry, could allow for safety and quality testing of up-and-coming biotherapeutics to be done at a fraction of the time required by conventional methods, which typically require the lengthy and costly production of certain biomaterials used for sample testing.

The study was conducted in collaboration with researchers from Merck, Johnson & Johnson and Ohio University, and was supported by a $379,397 grant from the National Institutes of Health.

This method we’ve developed at NJIT has the potential to have a major impact in quantitative proteomics, and it represents a paradigm shift in pharmaceutical industry in terms of monitoring biopharmaceutical product and process impurities for quality control,” said Hao Chen, the paper’s corresponding author and professor at NJIT’s Department of Chemistry and Environmental Sciences.

“With this study, we’ve now demonstrated an approach that can quantify drug product and process impurities much more quickly and accurately than had been possible. … We expect it to become very useful to facilitate therapeutic protein and vaccine development for treatment and prevention of different diseases in the future.”

Traditionally such testing, or protein quantitation, involves time-consuming preparation of synthetic isotope-labeled peptides which are used as internal standards to measure total protein concentrations in a sample — helping researchers actively monitor the efficacy and safety of therapeutic protein components throughout the drug development process.

Source: Read Full Article