Researchers at the University of Eastern Finland have uncovered potential mechanisms by which microRNAs (miRNA) drive atherogenesis in a cell-type-specific manner. Published in the Arteriosclerosis, Thrombosis, and Vascular Biology journal, the study provides novel insight into the miRNA profiles of the main cell types involved in atherosclerosis.
Atherosclerosis is the underlying cause of most cardiovascular diseases and one of the leading causes of mortality in the world. During atherosclerosis, arteries become progressively narrow and thick due to the formation of plaques containing cholesterol deposits, calcium and cells, among other components. Although the role and contribution to atherosclerosis of endothelial cells, smooth muscle cells and macrophages—the main cell types associated with disease progression in the vascular wall—has been previously described, the molecular mechanisms leading to gene expression changes during atherosclerosis in these cell types remain unknown. In particular, the cell-type specific expression and regulation of miRNAs in the disease context has remained unexplored. MiRNAs represent one class of small non-coding RNAs that regulate the protein production by binding to messenger RNAs of protein encoding genes and this way affect cell function and disease progression.
Source: Read Full Article